Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and torsion angles have been deposited with the IUCr (Reference: CR1103). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Díaz, E., Alvarez, A., Toscano, R. A., Shoolery, J. N. & Jankowski, K. (1990). Can. J. Chem. 68, 701-704.
- Sheldrick, G. M. (1981). SHELXTL. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Revision 3.0. Univ. of Göttingen, Germany.

Acta Cryst. (1994). C50, 2032-2033

Anticancer Agent Chloroquinoxaline Sulfonamide

MEI LIU, JUHN R. RUBLE AND SATISH K. ARORA*

Department of Crystallography, University of Pittsburgh, Pittsburgh, PA 15260, USA

(Received 11 October 1993; accepted 29 June 1994)

Abstract

The crystal structure of the antitumor agent 4-amino-N-(5-chloro-2-quinoxalinyl)benzenesulfonamide, $C_{14}H_{11}CIN_4O_2S$, has been determined by X-ray diffraction methods. The geometry around the S atom is distorted tetrahedral. The quinoxaline ring system is almost planar with a dihedral angle of 84.4 (2)° between the phenyl ring of the sulfonamide group and the quinoxaline ring. There is an intermolecular N—H…O bond of 2.966 (6) Å.

Comment

Chloroquinoxaline sulfonamide (I) is a new agent with *in vitro* antitumor activity against human lung, breast, melanoma and ovarian cancers (Pinedo, Longo & Chabner, 1992). The mechanism of the antitumor activity is unknown.

An ORTEPII drawing (Johnson, 1976) of the structure is shown in Fig. 1. The S=O distances [1.416 (4) and

©1994 International Union of Crystallography Printed in Great Britain – all rights reserved

1.436 (4) Å] are within the range observed for other sulfanalide drugs (Chaterjee, Dattagupta & Saha, 1981). The S-C distance of 1.729 (6) Å is shorter than normally observed in sulfonamides (Urbanczyk-Lipkowska, Krajewski, Gluzinski & Stadnicka, 1982). In addition, the C-Cl bond distance [1.704 (6) Å] is somewhat shorter than that observed in 6-chloro-3-ethoxycarbonyl-2-methylquinoxaline 1,4-dioxide (Macdonald & Arora, 1981). The dihedral angle between the chloro-substituted benzene ring and the heterocyclic ring is $1.52(5)^{\circ}$. indicating that the quinoxaline part is planar. The structure of monoclinic crystals of the acetonitrile solvate of chloroquinoxaline sulfonamide has been reported (Deutsch, Van Derveer & Zalkow, 1985), Bond distances and angles are similar to those observed here but the molecular conformation is slightly different; the torsion angle C9—S—N2—C2 is -63.2(6) here and 55.6 (6) $^{\circ}$ in the monoclinic form.

There is an intermolecular hydrogen bond between the amino N atom and atom O2 of the sulfoxide [N2— $H \cdot \cdot O2(2-x, -y, 2-z)$ 2.966 (6) Å]. Other short contacts (< 3.5 Å) are N12···O1(1 + x, y, z) 3.248 (7), N12···N1(x, 1 + y, z) 3.208 (7) and N12···O2(2 - x, 1 - y, 2 - z) 3.300 (6) Å.

Fig. 1. Displacement ellipsoid plot (Johnson, 1976) of the title molecule. Ellipsoids are drawn at the 50% probability level.

Experimental

Crystal data $C_{14}H_{11}ClN_4O_2S$ $M_r = 334.8$ Triclinic $P\overline{1}$ a = 7.924 (4) Å b = 9.211 (3) Å c = 11.188 (4) Å $\alpha = 77.36$ (3)° $\beta = 85.04$ (3)° $\gamma = 64.43$ (3)° V = 718.5 (5) Å³ Z = 2 $D_x = 1.547$ Mg m⁻³

Mo $K\alpha$ radiation $\lambda = 0.71073$ Å Cell parameters from 25 reflections $\theta = 15.4-17.2^{\circ}$ $\mu = 0.414 \text{ mm}^{-1}$ T = 291 KDiamond plate $0.2 \times 0.2 \times 0.125 \text{ mm}$ Light yellow Crystal source: hot methanol solution of drug from National Cancer Institute

Acta Crystallographica Section C ISSN 0108-2701 ©1994

Data collection

Enraf–Nonius CAD-4
diffractometer
$\omega/2\theta$ scans
Absorption correction:
none
4426 measured reflections
4179 independent reflections
1929 observed reflections
$[F > 3\sigma(F)]$

Refinement

Refinement on F	$(\Delta/\sigma)_{\rm max} = 0.003$
R = 0.057	$\Delta \rho_{\rm max} = 0.251 \text{ e } \text{\AA}^{-3}$
wR = 0.057	$\Delta \rho_{\rm min} = -0.51 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.56	Extinction correction: none
1929 reflections	Atomic scattering factors
232 parameters	from International Tables
Only coordinates of H atoms	for X-ray Crystallography
refined	(1974, Vol. IV)
$w = 1/[\sigma^2(F) + (0.02F_o^2)^2]$	

Table 1. Fractional atomic coordinates and equivalentisotropic displacement parameters (Å²)

 $R_{int} = 0.007$ $\theta_{max} = 30^{\circ}$ $h = -11 \rightarrow 11$ $k = 0 \rightarrow 12$ $l = -15 \rightarrow 15$ 3 standard reflections frequency: 100 min intensity variation: 4%

$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i . \mathbf{a}_j.$

	x	y	Ζ	U_{eq}
S	0.8820(2)	0.2169 (2)	0.8417(1)	0.046(1)
CI	1.3380 (2)	0.0960 (2)	0.2376(1)	0.072 (1)
01	0.7451 (5)	0.3181 (5)	0.7497 (3)	0.056 (2)
02	0.8218 (5)	0.1647 (4)	0.9615 (3)	0.058 (2)
N1	1.2440 (6)	-0.1234 (6)	0.6902 (4)	0.042 (2)
C2	1.1075 (8)	0.0202 (7)	0.6893 (5)	0.040 (3)
C2a	1.3390 (8)	-0.1488 (7)	0.5827 (5)	0.039 (3)
N2	1.0112 (7)	0.0425 (5)	0.7985 (4)	0.048 (2)
C3	1.0544 (8)	0.1435 (7)	0.5802 (6)	0.047 (3)
C3a	1.2894 (8)	-0.0233 (7)	0.4760 (5)	0.038 (3)
N4	1.1427 (7)	0.1234 (6)	0.4767 (4)	0.051 (2)
C5	1.3932 (8)	-0.0533 (7)	0.3672 (5)	0.045 (3)
C6	1.5372 (9)	-0.2024 (9)	0.3671 (6)	0.055 (3)
C7	1.5831 (9)	-0.3279 (8)	0.4711 (7)	0.058 (3)
C8	1.4886 (9)	-0.3021 (8)	0.5768 (6)	0.057 (3)
C9	1.0297 (8)	0.3075 (7)	0.8524 (5)	0.049 (3)
C10	1.1863 (9)	0.2284 (8)	0.9262 (5)	0.051 (3)
C11	1.2996 (9)	0.3013 (8)	0.9362 (5)	0.052 (3)
C12	1.2582 (8)	0.4607 (7)	0.8726 (5)	0.043 (3)
N12	1.3696 (9)	0.5354 (7)	0.8849 (5)	0.063 (3)
C13	1.1011 (9)	0.5398 (7)	0.7986 (6)	0.057 (3)
C14	0.9893 (9)	0.4656 (8)	0.7878 (6)	0.057 (3)

Table 2. Selected	l geometric	parameters	(A, '	')	ł
-------------------	-------------	------------	-------	----	---

Ŷ

	-		
S01	1.416 (4)	C2αC8	1.409 (9)
S02	1.436 (4)	$C3\alpha$ — $C5$	1.418 (8)
S-N2	1.643 (5)	C5—C6	1.355 (8)
SC9	1.729(6)	C6C7	1.395 (9)
C1C5	1.704 (6)	C7—C8	1.353 (9)
N1-C2	1.297 (7)	C9-C10	1.374 (9)
N1—C2 α	1.372(7)	C9-C14	1.386 (9)
C2—C3	1.423 (7)	C10-C11	1.357 (9)
C2N2	1.390(7)	C11-C12	1.392 (9)
C3—N4	1.307 (8)	C12-C13	1.377 (8)
N4—C3α	1.351 (8)	C12—N12	1.363 (8)
$C2\alpha$ — $C3\alpha$	1.414 (8)	C13-C14	1.358 (9)
01—S—O2	118.8 (2)	$C3\alpha$ — $C5$ — $C6$	119.3 (5)
01—S—N2	108.3 (2)	C6C5Cl	120.0 (5)
O2-S-N2	102.9 (2)	C5-C6-C7	121.3 (6)
01-S-C9	109.4 (2)	C6C7C8	120.7 (6)
O2-S-C9	110.1 (2)	C7—C8—C2α	120.5 (6)
$C2-N1-C2\alpha$	117.0 (5)	S-C9-C10	121.7 (5)

© 1994 International Union of Crystallography Printed in Great Britain – all rights reserved

N1-C2-C3	121.3 (5)	S-C9-C14	120.2 (5)
N1-C2-N2	116.1 (5)	C10-C9-C14	118.1 (6)
N2-C2-C3	122.5 (5)	S—N2—C2	127.6 (4)
C2-C3-N4	123.2 (6)	C9-C10-C11	121.5 (6)
C3—N4—C3a	116.8 (5)	C10-C11-C12	120.5 (6)
Ν4—C3α—C2α	120.5 (5)	C11-C12-C13	117.9 (6)
N4—C3a—C5	120.0 (5)	C11—C12—N12	120.6 (6)
N1—C2 α —C3 α	121.2 (5)	C13-C12-N12	121.6 (6)
N1—C2 α —C8	120.1 (5)	C12-C13-C14	121.4 (6)
$C3\alpha$ — $C2\alpha$ — $C8$	118.7 (5)	C13—C14—C9	120.6 (6)
$C2\alpha$ — $C3\alpha$ — $C5$	119.5 (5)	N2-SC9	106.6 (3)
$C3\alpha - C5 - C1$	120.6 (5)		

Data were collected with the diffractometer mounted on a Rigaku 100 PL with a molybdenum anode operating at 57.5 kV and 90 mA using a 0.5×5 mm filament and an Nb filter. The structure was solved by direct methods using the program *SHELXS86* (Sheldrick, 1985) and refined using *SHELX76* (Sheldrick, 1976).

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: HA1087). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Chaterjee, C., Dattagupta, J. K. & Saha, N. N. (1981). Acta Cryst. B37, 1835–1838.
- Deutsch, H. M., Van Derveer, D. G. & Zalkow, L. H. (1985). Acta Cryst. C41, 1116–1118.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Macdonald, L. & Arora, S. K. (1981). Acta Cryst. B37, 1445-1446.

Pinedo, H. M., Longo, D. L. & Chabner, B. A. (1992). Cancer Chemotherapy and Biological Response Modifiers Annual, pp. 115-155. New York: Elsevier.

Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.

Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.

Urbanczyk-Lipkowska, Z., Krajewski, J. W., Gluzinski, P. & Stadnicka, K. (1982). Acta Cryst. B38, 971–973.

Acta Cryst. (1994). C50, 2033-2036

Eupenifeldin

QI GAO AND FRIEDRICH MAYERL

Pharmaceutical Research Institute, Bristol–Myers Squibb Company, Wallingford, Connecticut 06492, USA

(Received 16 March 1993; accepted 14 March 1994)

Abstract

Eupenifeldin, 4,16,19-trihydroxy-1,6a,10,10,13,18ahexamethyl-3,6a,7,10,11,11a,12,15,18a,19,20,20a,21dodecahydro-1*H*-dicyclohepta[*e:e'*]cycloundeca[1,2-*b*:5, 6-b']dipyran-3,15-dione, C₃₃H₄₀O₇, is a novel cytotoxic